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Abstract A novel Schiff base ligand (L=7-methoxychro-
mone-3-carbaldehyde benzoyl hydrazone) and its La(III)
and Eu(III) complexes have been successfully prepared.
The crystal structure of [LaL2(NO3)3]·H2O was character-
ized by X-ray crystallography. It crystallizes in monoclinic,
space group C2/c with crystallographic data: a=27.7173
(17) Å, b=10.0002(6) Å, c=14.7884(9) Å, β=102.6870
(10)° and Z=4. In the structure, the La(III) ion satisfies 12
coordination and three nitrate coordinate as bidentate
ligand. The biological experiments show that the ligand
and its two complexes can strongly bind to DNA through
intercalation mode, and the three compounds also exhibit
good antioxidant activities against OH• and O2

−•. Moreover,
it is found that the Eu(III) complex exhibits characteristic
fluorescence of europium ion in different organic solvent.
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Introduction

Cisplatin (cis-[PtCl2(NH3)2]) is the first and the most
widely used metal-based drug in cancer chemotherapy [1].
Then Carboplatin ([Pt(cbdc)(NH3)2] where cbdc=1,1-
cyclobutane dicarboxylate), a second generation Pt-drug
appeared soon [2]. Despite their wide clinical use, their
severe side effects have stimulated the search for other
metal-based anticancer drugs [3]. It is well known that the

ability of Pt-drug to inhibit tumor growth is related with its
efficient binding to DNA. In this respect, studying
interaction between small metal complexes and DNA may
lead to a new kind of active anticancer drugs [4].

More recently, the complexes of rare earth have been
attracting attention [5, 6]. They possess interesting photo-
physical and photochemical properties which can potential-
ly be harnessed in the development of new photodynamic
therapies, and offer exciting opportunities to elucidate
structural features within DNA itself [7]. Rare earth
complexes with tetracycline, phenanthroline [8], adriamy-
cin and pyridine [9–12] have been synthesized as a probe to
study nucleic acids. What we consider is to synthesize the
rare earth complexes which can not only emit fluorescence
but possess ability to strongly interact with DNA. These
complexes may be the excellent candidates for biological
application. However, due to the weak absorption capabil-
ities of rare earth ions (e.g. Eu3+), organic ligands are often
used to increase ion emission through energy transfer
processes [13, 14]. Hence which type of ligand we choose
is an intractable problem.

In our previous work, lanthanide complexes with Schiff
base derived from 6-hydroxy-3-carbaldehyde chromone
were reported and all the complexes can strongly interact
with DNA using intercalation mode [15]. We think these
DNA-binding properties may be due to the aromatic planar
structure of chromone chromophore. As further research, 7-
methoxychromone-3-carbaldehyde benzoyl hydrazone
Schiff base derived from another new chromone (6-
methoxy-3-carbaldehy-de chromone) and its La(III),
Eu(III) complexes were synthesized. The experiment details
suggest that both the two complexes and the ligand can also
obviously interact with DNA by intercalation. Fortunately,
we find that the Eu(III) complex can emit its characteristic
fluorescence in organic solvent. Hence this complex may be
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a candidate of anticancer drugs and nucleic acid probe.
Furthermore, the complexes and the ligand have the ability
to scavenge OH• and O2

−•, which also is an important
reason of inducing cancer [16].

Experimental section

Instrumentation

Elemental analyses were conducted on a Vario EL analyzer.
Infrared spectra (4,000–400 cm−1) were determined with
KBr disks on a Therrno Mattson FTIR spectrometer. The
ultraviolet spectra were recorded on a Lambda 35 UV/Vis
spectrometer. 1H NMR spectra were measured on a Bruker
Avance Drx 200-MHz spectrometer. The fluorescence
spectra were recorded on a RF-5301PC spectrofluoropho-
tometer produced by SHIMADZU. The antioxidant activ-
ities were tested on a 721E spectrophotometer.

Materials and methods

Acetic anhydride, 2-hydroxy-4-methoxy-acetophenone,
BF3·Et2O, POCl3, transition metal nitrates, Safranin, Manni-
tol, EDTA, FeSO4·7H2O were produced in China. CT-DNA,
ethidium bromide (EB), Nitroblue tetrazolium (NBT), me-
thionine (MET), Vitamin B2 (VitB2) were purchased from
Sigma Chemicals Co. (USA). All materials and solvents
employed in this study were of analytical grade. EDTA–
Fe(II) and Na2HPO4–KH2PO4 buffers were prepared with
twice distilled water. All the experiments involving interac-
tion of the complexes with CT-DNA were carried out in
doubly distilled water buffer containing 5 mM Tris [Tris
(hydroxymethyl)-aminometh-ane] and 50 mM NaCl, and
adjusted to pH 7.1 with hydrochloric acid. A solution of CT-
DNA in the buffer gave a ratio of UV absorbance of about
1.8–1.9:1 at 260 and 280 nm, indicating that the DNA was
sufficiently free of protein. The DNA concentration per
nucleotide was determined by absorption spectroscopy using
the molar absorption coefficient (6,600 M−1 cm−1) at 260 nm.

Viscosity measurements

Viscosity experiments were conducted on an Ubbdlodhe
viscometer, immersed in a thermostatic water-bath main-
tained to 25.0 °C. Each compound was introduced into a

DNA solution (10 μΜ) present in the viscometer. Data was
presented as (η/η0)

1/3 versus the ratio of the concentration
of the compound and DNA, where η is the viscosity of
DNA in the presence of compound and η0 is the viscosity
of DNA alone [17].

Hydroxyl radical scavenging assay

The hydroxyl radicals (OH·) in aqueous media were
generated through the Fenton system. The solution of the
tested compound was prepared with DMF. The 5 ml
assay mixture contained following reagents: safranin
(10 μM), EDTA–Fe(II) (80 μM), H2O2 (0.6%), the tested
compound (4–20 μM) and a phosphate buffer (pH 7.4).
The assay mixtures were incubated at 40 °C for 50 min in
a water-bath. After which, the absorbance was measured
at 520 nm. All the tests were run in triplicate and
expressed as the mean ± standard deviation (SD). The
suppression ratio for OH· was calculated from the
following expression:

Scavenging effect %ð Þ ¼ Ai � A0

Ac � A0
� 100

(Where Ai = the absorbance in the presence of the tested
compound; A0=the absorbance in the absence of the
tested compound; Ac = the absorbance in the absence of
the tested compound, EDTA–Fe(II) and H2O2.)

Superoxide radical scavenging assay

The superoxide radicals (O2
−•) were generated in vitro by

non-enzymatic system and determined spectrophotometri-
cally by nitro blue tetrazolium (NBT) photoreduction
method with a little modification in the method adopted
elsewhere. The amount of O2

−• and suppression ratio for
O2

−• can be calculated by measuring the absorbance at
560 nm. Solution of MET, VitB2 and NBT were prepared at
avoiding light. The tested compounds were dissolved in
DMF. The assay mixture, in a total volume of 5 ml,
contained MET (10 mM), NBT (46 μM), VitB2 (3.3 μM),
the tested compound (1–8 μM) and a phosphate buffer (pH
7.8). After illuminating with a fluorescent lamp at 30 °C for
10 min, the absorbance of the samples (Ai) was measured at
560 nm. The sample without the tested compound was used
as control and its absorbance was A0. All experimental
results were expressed as the mean ± standard deviation
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(SD) of triplicate determinations. The suppression ratio for
O2

−• was calculated from the following expression:

Scavenging effect %ð Þ ¼ A0 � Ai

A0
� 100

X-ray crystallography

Intensity data were collected on a Bruker Smart Apex II
diffractometer using a MoΚα radiation (λ=0.71073 Ǻ).
The structure was solved by direct methods with SHELXL-
97 [18] program and expanded with difference Fourier
technique. The non-hydrogen atoms were refined aniso-
tropically by the full-matrix least-squares method based on
F2 with all observed reflections. The hydrogen atoms were
generated geometrically with isotropic thermal parameters.

Preparation of Schiff base ligand and the La(III) and Eu(III)
complexes

Scheme of the synthesis of the ligand is shown in
Fig. 1. 7-Methoxychromone-3-carbaldehyde was pre-
pared according to the literature [19]. The Schiff base
ligand was in accordance with the following method:
Benzoyl hydrazine (1.36 g, 10 mmol) in 20 ml ethanol
was added dropwise to the 7-methoxychromone-3-car-
baldehyde (2.04 g, 10 mmol) of 10 ml trichloromethane
solution and a large amount of light yellow precipitate
appeared. After continuing stirring for 6 h at room
temperature, the precipitate was collected and recrystal-
lized from ethanol to give the pure ligand (L). Yield,
88%. Mp: 176–178 °C. 1H NMR (DMSO-d6, ppm): δ
11.91 (1H, s –NH), 8.75 (1H, s, CH=N), 8.60 (1H, s, 2-
H), 8.02(1H, d, J=8.9 HZ, H-5), 7.90–7.93(2H, d, ph-H
(1,5,)), 7.48–7.59 (3H, m ph-H(2,3,4,)), 7.21 (1H, d, J=
2.4HZ, 8-H), 7.09–7.14 (1H, dd, J=2.4 and J=8.9 HZ,
H-6), 3.91 (3H, s, –CH3). IR νmax (cm

−1): ν(C=O): 1671,
ν(NH–C=O) 1639, ν(C=N): 1603.

La(NO3)3·6H2O (0.476 g, 1.1 mmol) in 5 ml ethanol
was added to the 30 ml ethanol solution containing the
Schiff base ligand (0.322 g, 1 mmol) and stirred for 1 day
at room temperature. The yellow product was collected
and washed with ethanol three times, and then dried at
vacuo. The Eu(III) complex was prepared using the same
method. Lanthanum complex yield, 51%; C36N7O17H28La
requires(%) C, 44.64; N, 10.10; H, 2.89. Found: C, 44.41;
N, 10.05, H, 2.72. IR νmax (cm

−1): ν(C=O): 1641, ν(NH–
C=O): 1623, ν(C=N): 1575, ν(NO3

−): 1491, 1284, 1022,
827, 733. ΛM (S cm2 mol−1) 10−3 M methanol solution
25 °C = 40.6 . Europ ium complex y ie ld , 48%;
C36N7O17H28Eu requires (%) C, 44.05; N, 9.97; H, 2.85.
Found: C, 43.91; N, 9.86; H, 2.76. IR νmax (cm−1):
ν(C=O): 1643, ν(NH–C=O): 1627, ν(C=N): 1571.
ν(NO3

−): 1491, 1289, 1026, 820, 730. ΛM (S cm2

mol−1) 10−3 M methanol solution 25 °C=54.2.

Table 1 Crystal data and experimental data

Empirical formula C36H32LaN7O19

Formula weight 1,005.60
Temperature 298(2) K
Wavelength 0.71073 Å
Crystal system, space group Monoclinic, C2/c
a (Å) 27.7173(17)
b (Å) 10.0002(6)
c (Å) 14.7884(9)
α (°) 90
β (°) 102.6870(10)
γ (°) 90
Volume (Å3) 3,998.9(4)
Z 4
Dcalc (Mg/m3) 1.670
F(000) 2,024
μ (mm−1) 1.159
θ range (°) 1.51–26.00
Reflections collected/unique 11,168/3,909 [R(int)=0.0279]
Goodness-of-fit on F2 1.041
R indices [I>2σ(I)] R1=0.0257, wR2=0.0603
R indices (all data) R1=0.0302, wR2=0.0619

Table 2 Selected bond lengths

Selected bond bond lengths (Å) Selected bond bond lengths (Å) Selected bond bond lengths (Å)

La(1)–O(3) 2.4925(16) La(1)–O(3a) 2.4925(16) La(1)–O(4) 2.6386(16)
La(1)–O(4a) 2.6386(16) La(1)–O(5) 2.6678(18) La(1)–O(5a) 2.6678(18)
La(1)–O(6) 2.7124(18) La(1)–O(6a) 2.7124(18) La(1)–O(8) 2.7167(18)
La(1)–O(8a) 2.7167(18) La(1)–N(1) 2.873(2) La(1)–N(1a) 2.873(2)
N(1)–C(11) 1.284(3) N(1)–N(2) 1.389(3) N(2)–C(12) 1.339(3)
N(3)–O(7) 1.226(3) N(3)–O(6) 1.255(3) N(3)–O(5) 1.267(3)
N(4)–O(9) 1.234(4) N(4)–O(8) 1.258(2) N(4)–O(8a) 1.258(2)
O(3)–C(7) 1.240(3) O(4)–C(12) 1.241(3) C(6)–C(7) 1.449(3)
C(6)–C(11) 1.455(3) C(7)–C(8) 1.443(3)

J Fluoresc (2009) 19:409–418 411



Results and discussion

IR spectra

The IR spectrum of ligand shows bands at 1671, 1639 and
1603 cm−1, which may assign to ν(C=O), ν(NH–C=O) and
ν(C=N) respectively. In the IR spectra of the complexes,
these bands shift to 1641, 1623 and 1575 cm−1 for La(III)
complex, 1643, 1627 and 1571 cm−1 for Eu(III) complex.
These results indicate the three groups coordinate to the
rare earth ions. The absorption bands appear at 1491 and
1284 cm−1 for La(III) complex, 1491 and 1289 cm−1 for
Eu(III) complex assign to nitrate. It indicates that coordi-
nated nitrate groups in the complex are bidentate and there
is no free nitrate [20], which is demonstrated by the crystal
structures illuminated as follows.

Description of the crystal structure

The single crystal of La(III) complex was grown from
ethanol with slow evaporation at room temperature. The
crystal is yellow and soluble in DMSO, DMF, methanol,
ethanol, slightly soluble in acetone, insoluble in benzene
and water. IR spectra indicate the nitrate is C2v symmetric
with five absorption peaks, molar conductivity (40.6 S cm2

mol−1) show La(III) complex is nonelectrolyte in methanol.
All these results are confirmed by crystal structure. The
crystal data and refinement results of the La(III) complex is
summarized in Table 1. Selected bond lengths and angles

Table 3 Selected bond angles

Selected bond Bond angles (°)

O(3)–La(1)–O(3a) 178.17(8)
O(3a)–La(1)–O(4) 67.76(5)
O(3)–La(1)–O(5a) 66.71(6)
O(4)–La(1)–O(5a) 67.90(6)
O(4a)–La(1)–O(5a) 125.87(5)
O(3)–La(1)–O(6) 69.55(6)
O(4)–La(1)–O(6a) 65.58(6)
O(3a)–La(1)–O(6) 109.52(6)
O(4a)–La(1)–O(6) 65.58(6)
O(6)–La(1)–O(6a) 122.73(8)
O(4)–La(1)–O(8) 125.76(5)
O(5)–La(1)–O(8a) 63.81(6)
O(3a)–La(1)–O(8a) 67.67(5)
O(4a)–La(1)–O(8a) 125.76(5)
O(6a)–La(1)–O(8a) 63.73(6)
O(3)–La(1)–N(1) 63.35(6)
O(4)–La(1)–N(1a) 64.69(5)
O(6)–La(1)–N(1) 120.76(6)
O(8)–La(1)–N(1a) 166.41(5)
O(4a)–La(1)–N(1a) 56.61(5)
O(5a)–La(1)–N(1) 69.68(6)
O(8a)–La(1)–N(1a) 120.06(6)
C(11)–N(1)–N(2) 114.20(2)
C(12)–N(2)–N(1) 117.40(2)
O(6)–N(3)–O(5) 117.20(2)
O(9)–N(4)–O(8a) 121.33(15)
O(3)–La(1)–O(4) 113.43(6)
O(3a)–La(1)–O(4a) 113.43(6)
O(3)–La(1)–O(5) 112.94(6)
O(3a)–La(1)–O(5a) 112.94(6)
O(4a)–La(1)–O(5) 67.90(6)
O(3)–La(1)–O(6a) 109.52(6)
O(5)–La(1)–O(6) 47.17(5)
O(3a)–La(1)–O(6a) 69.55(6)
O(5a)–La(1)–O(6a) 47.17(5)
O(3)–La(1)–O(8) 67.67(5)
O(4)–La(1)–O(8a) 120.89(5)
O(6)–La(1)–O(8) 63.73(6)
O(3a)–La(1)–O(8) 110.52(6)
O(5a)–La(1)–O(8a) 96.83(6)
O(6a)–La(1)–O(8) 64.04(6)
O(3)–La(1)–N(1a) 118.34(5)
O(5)–La(1)–N(1) 129.37(6)
O(6)–La(1)–N(1a) 105.82(6)
O(3a)–La(1)–N(1a) 63.35(6)
O(4a)–La(1)–N(1) 64.69(5)
O(6a)–La(1)–N(1a) 120.76(6)
O(8a)–La(1)–N(1) 166.41(5)
C(11)–N(1)–La(1) 130.23(16)
O(7)–N(3)–O(6) 121.90(2)
O(9)–N(4)–O(8) 121.33(15)
O(3)–La(1)–O(4a) 67.76(5)
O(4)–La(1)–O(4a) 106.60(7)
O(4)–La(1)–O(5) 125.87(5)
O(3a)–La(1)–O(5) 66.71(6)
O(5)–La(1)–O(5a) 159.79(8)

Table 3 (continued)

Selected bond Bond angles (°)

O(4)–La(1)–O(6) 170.48(5)
O(5)–La(1)–O(6a) 120.77(6)
O(4a)–La(1)–O(6a) 170.48(5)
O(5a)–La(1)–O(6) 120.77(6)
O(3)–La(1)–O(8a) 110.52(6)
O(5)–La(1)–O(8) 96.83(6)
O(6)–La(1)–O(8a) 64.04(6)
O(4a)–La(1)–O(8) 120.86(5)
O(5a)–La(1)–O(8) 63.81(6)
O(8)–La(1)–O(8a) 46.59(8)
O(4)–La(1)–N(1) 56.61(5)
O(5)–La(1)–N(1a) 69.68(6)
O(8)–La(1)–N(1) 120.06(6)
O(3a)–La(1)–N(1) 118.34(5)
O(5a)–La(1)–N(1a) 129.37(6)
O(6a)–La(1)–N(1) 105.82(6)
N(1)–La(1)–N(1) 70.21(8)
N(2)–N(1)–La(1) 114.88(13)
O(7)–N(3)–O(5) 120.80(2)
O(8)–N(4)–O(8a) 117.30(3)
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are given in Tables 2 and 3. Fig. 2a shows the crystal
structure. As seen from the Fig. 2a, La(III) ion is 12
coordination with two ligand and three nitrate. The
chromone ring and the benzene ring are nearly at one
plane. The distance between La(III) ion and six oxygen
atoms of nitrate appear to be the same (2.6922±0.025 Å),
but the bond length of La–O(3) and La–O(4) is respectively
2.4925(16) Å and 2.6386(16) Å, which are shorter than the
six oxygen of nitrate. It is notable that the distance between
La(III) ion and N atoms of imino group is 2.873(2)
Å, which is unusually longer than other ten La–O bond
length [21]. Three nitrate have two coordination type, the
bond angles of O(5a)–La–O(6a) and O(5)–La–O(6) are all
47.17°(5), but the bond angle of O(8)–La–O(8a) is 46.59°

a b

Fig. 2 crystal structure (a) and coordination polyhedron (b) of La(III) complex
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(8), the bond length of La–O(5)=La–O(5a)=2.6678(18) Å,
La–O(6)=La–O(6a)=2.7124(18) Å, La–O(8)=La–O(8a)=
2.7167(18) Å. The coordination polyhedron is distorted
bicapped pentagonal anti prism as shown in Fig. 2b.

Fluorescence studies

The fluorescence characteristics of the Eu3+ complex in
organic solvent (concentration: 1×10−4 mol L−1, slit: 5 nm)
were observed at room temperature. It can be seen from
Fig. 3 that the complex has the strongest luminescence in
CHCl3 solution, and then in ethyl acetate, ethanol, acetone,
methanol and MeCN. This is due to the coordinating effects
of solvents, which is solvate effect [22]. Together with the
raising coordination abilities of organic solvent for the
lanthanide ions, the oscillatory motions of the entering
molecules consume more energy which the ligand triplet
level transfer to the emitting level of the lanthanide ion.
Thus, the energy transfer could not be carried out perfectly

[23]. The complex is excited at 337 nm in all organic
solvent, and emission bands at 577, 590, 614, 677 nm are
assigned to 5D0→

7F0,
5D0→

7F1,
5D0→

7F2 and
5D0→

7F4.
The emission at 614 nm from 5D0→

7F2 electronic dipole
transition is the strongest, suggesting low symmetry around
the Eu(III) ion, in agreement with the crystal structure
analysis.

Absorption titration

Various techniques for precise determination of binding
constants have been developed and provide information for
understanding the nature of the complexes between small
molecules and biomacromolecules. Electronic absorption
spectroscopy is one of the most useful techniques in DNA-
binding studies [24]. The spectrophotometric titration of the
ligand, La(III) and Eu(III) complex are shown in Fig. 4a, b
and c, which represent its UV–Vis spectra in absence or
presence of CT-DNA. The addition of CT-DNA to the
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solutions of the compound at the DNA/compounds molar
ratios varying from 0 to 4 induces large hypochromic
responses about 54.1% at 287 nm for ligand, 44.9% at
289 nm for La(III) complex and 34.4% at 292 nm for
Eu(III) complex. These spectral variation of the complex
may be considered as the characteristic features of aromatic
chromophore (π → π*) interactions with the nucleic acid
bases [25]. In addition, it must be noticed there is an
isobathic point observed at 332 nm in ligand, La(III) and
Eu(III) complex, respectively. The large hypochromism and
isobathic point indicate these three compounds can strongly
interact with DNA.

Spectrofluorimetric titration

The ligand, La(III) and Eu(III) complex can emit lumines-
cence in Tris buffer at ambient temperature, with a
maximum appearing at 437 nm (ex=357 nm), 435 nm
(ex=358 nm) and 440 nm (ex=360 nm), respectively. The
results of emission titration for three compounds with DNA
are illustrated in Fig. 5a, b and c. Upon addition of DNA,
the emission intensity of ligand, La(III) and Eu(III)
complex grow about 1.9, 1.47 and 2.0 times larger than
that in the absence of DNA and saturates at a [DNA]/
[compound] ratio of 3.5, 2.5 and 3.25. This implies that the
three compounds can interact with DNA and be protected
by DNA efficiently, since the hydrophobic environment
inside the DNA helix reduces the accessibility of solvent
water molecules to the compounds and the compounds’
mobility is restricted at the binding site, leading to a

decrease of the vibrational modes of relaxation [26]. Thus,
the fluorescence of the three compounds greatly increases.
In order to further compare quantitatively the affinity of the
compounds bound to CT-DNA, based on the spectrofluori-
metric titrations, binding data were cast into the form of a
Scatchard plot of r/Cf vs. r, where r is the binding ratio Cb/
[DNA]t and Cf is the free compound concentration. The
concentration of the bound compound (Cb) was calculated
using Eq [27]:

Cb ¼ Ct F � F0
� ��

Fmax � F0
� �� �

Where Ct is the total compounds concentration, F is the
observed fluorescence emission intensity at given DNA
concentration, F0 is the intensity in the absence of DNA
and Fmax is the intensity of the totally bound compounds.
From the plot of r/Cf versus r (Fig. 5a′, b′ and c′), the
intrinsic binding constants K of the ligand, La(III) and
Eu(III) complex were calculated to be 1.42×106 M−1,
2.76×106 M−1, 4.1×106 M−1. The values of the two
complexes are somewhat larger than some known DNA
intercalators, such as K=4.8×104 M−1 for [Ru(bpy)2-
(phi)]Cl2 (phi=9,l0-phenanthrenequinonediimine) [28],
2.1×104 M−1 for [Ru(bpy)2(ddt)]

2+ (ddt=3-(pyrazin-yl)-
5,6-diphenyl-as-trazine) [29], 6.3×104 M−1 for [Ru(bpy)2-
(dpt)]2+ (dpt=3-(pyrazin-yl)-as-triazino[5,6-f]phenanthrene)
[29], and also larger than that observed for [Ru
(bpy)2(dppz)]

2+ (>106) [30]. The large K value is the
direct evidence that the three compounds have good
ability to bind to DNA.
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Fig. 6 The emission spectra of
DNA-EB system (5 μM DNA
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λem=540–650 nm, in the pres-
ence of 2.5–50 μM ligand (a),
La(III) (b) and Eu(III) complex
(c). The arrow indicates the
emission intensity changes upon
increasing compounds concen-
tration. (d) is plots of F0/F
versus [Q]. The Kq values for
the ligand, La(III) and Eu(III)
complex are 1.86×104, 6.17×
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EB replacement experiment

The results obtained from absorption titration and spectro-
fluorimetric titration experiments are enough evidence that
the Schiff base ligand, La(III) and Eu(III) complex can
effectively bind to DNA. In order to confirm the bind
mode, EB replacement was employed. Since EtBr inter-
calates DNA through interactions with the minor groove,
the displacement of EtBr (quantified by fluorescence) by
the titration of a compound is suggestive of an intercalative
binding [31]. Figure 6a, b and c show the emission spectra
of DNA–EB system with increasing amounts of the ligand,
La(III) and Eu(III) complex. It is clear that the fluorescence
intensity of DNA–EB system greatly decreases upon the
addition of the ligand, La(III) and Eu(III) complex. The
results imply that the three compounds bind to CT-DNA via
the intercalative binding mechanism. According to linear
Stern–Volmer Eq. [32]

F0

�
F ¼ Kq Q½ � þ 1

Where F0 is the emission intensity in the absence of
quencher, F is the emission intensity in the presence
of quencher, Kq is the quenching constant, and [Q] is the
quencher concentration. The shape of Stern–Volmer plots
can be used to characterize the quenching as being
predominantly dynamic or static. Plots of F0/F versus [Q]
appear to be linear and Kq depends on temperature. The Kq

values for the ligand, La(III) and Eu(III) complex are 1.86×
104, 6.17×104 and 7.80×104 M−1, respectively, as shown in
Fig. 6d. This order is well consistent with the results of
spectrofluorimetric titration.

Viscosity measurement

Viscosity experiment is the most important method to
distinguish between intercalation and groove binding. Since
intercalators cause the unwinding and lengthening of DNA,
increasing ratios of [intercalator]/[DNA] increase the viscosity

of a DNA containing solution [33]. The effects of the ligand,
La(III) and Eu(III) complexes on the viscosity of DNA are
shown in Fig. 7. It is found that the viscosity of DNA
increases steadily with the increase of the concentration of the
compounds, which is similar to that of a classical intercalator
EB [25]. The results demonstrate that the three compounds
bind to DNA through the same way, i.e., the classical
intercalation mode, which also parallels the pronounced
emission quenching in the EB replacement experiment.

Antioxidant activities

Furthermore, the excellent DNA-binding properties of the
Schiff base ligand, La(III) and Eu(III) complex encourage
our desire to research their scavenging ability against
hydroxyl radical (OH•) and superoxide radical (O2

−•),
which are in close relationship with cancer.

The scavenging ability of the ligand, La(III) and Eu(III)
complexes against hydroxyl radical is shown in Fig. 8. It
can be seen that the inhibitory effect of three compounds on
hydroxyl radical is related to concentration, and at a
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concentration from 4 to 20 μM, the percentage scavenging
effect valued from about 9.11% to 56.33% for ligand,
31.01% to 79.75% for La(III) complex, and 24.68% to
81.65% for Eu(III) complex. It is obvious that scavenging
activities of the two complexes are stronger than that of
ligand.

Figure 9 shows the scavenging ability of the ligand,
La(III) and Eu(III) complexes against superoxide radical.
The inhibitory effect of three compounds on superoxide
radical is also related to concentration, and at a concentra-
tion from 1 to 8 μM, the percentage scavenging effect
valued from about 1.32% to 41.68% for ligand, 9.26% to
82.72% for La(III) complex, and 5.06% to 54.43% for
Eu(III) complex. Compared to the results of hydroxyl
radical experiment, two complexes also exhibit more
scavenging ability than free ligand throughout the tested
concentration, but the La(III) complex is the strongest, not
Eu(III) complex. The results show that the three com-
pounds’ ability against superoxide radical is significantly
higher than that of previous reported natural products [34].

Conclusion

A new chromone Schiff base, 7-methoxychromone-3-
carbaldehyde benzoyl hydrazone, and its La(III) and
Eu(III) complexes were reported. The structure of La(III)
complex was determined by X-ray crystallography. It is
notable that the ligand in La(III) complex has good planar
property. It is this planar structure that has result in higher
DNA-binding constant of complexes and intercalation
mode. What is more, the complexes have excellent ability
of antioxidant and the Eu(III) complex can emit its
characteristic fluorescence in different organic solvent.
These results suggest that the 7-methoxychromone-3-
carbaldehyde benzoyl hydrazone is not only a good ligand
to form biological rare earth complexes but also a good
organic chromophore to absorb and transfer energy to
Eu(III) ions. It is clear that the Eu(III) complex can be a
good candidate for biological use.
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